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The derivation of the equations of motion. Consider the 
equation of motion of a particle M with respect to a fixed origin 0 

d8r kr +F, dt’=----p- k = const,, r=lrl 

with the initial conditions 

dr * 
r = ro, dt= 4, t = to 

(1.1) 

(1.2) 

Here, I is the position vector of the particle M, F is a force act- 
ing on a unit mass in addition to a Newtonian force - kre3r. Let us 

introduce the designations 

G=rx$ IGI=G, y=+r, Irl= 1 (1.3) 

Here, c is the moment of momentum of the particle M whose mass is 

equal to unity; y is a unit vector directed from the origin 0 towards 

the particle M. 

Taking the derivative of G (1.3) with respect to t, we obtain from 

(1.1) 

dG 
;ii-= 

rxF (1.4) 
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Substituting r = yr into (1.1) and taking a scalar product of the 

equation (1.1) and y we obtain the equations for r 

d=r -- 
dP 

-!$P=-++Fy (1.5) 

Transforming the vector product of the vectors G, y, we obtain the 

differential equation for y 

dr - = F-G x y 
dt w-3 

The system of equations (1.4), (1.5), (1.6) with two known integrals 

Y*Y=l, ‘s.G=O (I.71 

is equivalent to the equation (1.1). Let us make a substitution of the 

dependent variable r and the independent variable t 

U = F-l, df=r-adt=u=dt P.8) 

‘Ihe equations (1.4) to (I .6) take the form 

dG dr 
-=u-ayxF, ==Gx’l, 
dr 

$,+Qu=k---SF.7 (1.9) 

Let us form at point 0 an orthogonal vectorial trihedron consisting 

of the unit vectors y, e and s, where 

g = G-G, s=gxy, 7aF -1 r (1.10) 

We will call the plane passing through the origin 0 and the moving 

particle IV, and containing the velocity vector &/dt, the plane of 

motion. 

The vector g is perpendicular to the plane of motion, vector s lies 

in the plane of motion. 

We designate the projections of the perturbation force F in the 

directions of the vectors y, g and S, by F 
Y’ Fg 

and F, 

F = F,y + F,g + F,s (1.11) 

Let us simplify the first of equations (1.9) by forming a separate 

equation for G and g; substituting in (1.9) G = Gg and F according to 

(1.11) we obtain the equations 

dG 
-k, dr = ua 

ds 
d’F= &xg 

Now we introduce a new auxiliary vector o 

(1.12) 
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(u = G% + CsG-lFgy (1.13) 

From the equation (1.9) for y and from (1.12) for 6 we can write 

(1.14) 

that is vector o is the angular velocity vector (see, for instance El, 
p.641) of motion of the vectoriaf trihedron y, g and S. If FB E 0, then 
g = const and the motion takes place in a fi;ed-plane. 

The equations (1.14) and (1.9) for u and the equations 
form a closed system. It is of the ninth order, but three 
known in advance 

(1.12) for G 
integrals are 

yy=l, @;g=~, 7&I = 0 (1.25) 

The obtained system of equations is equivalent to the equation (1.1). 
Its deficiency is that it is of a higher order than (1.1); its merit is 
that for F z 0 it becomes a system of differential equations wRith con- 
stant coefficients. Therefore, for sufficiently small values of the 
force F = IFI the method of a small parameter can be applied. Another 
property of the system (1.5), (1.14) and the first equation (1.12) is 
that if the forces Fv and Fs, depend only on u, T and G, the equations 
(1.5) and (1.12) can be integrated independently of equations (1.14). 
The integration of equations (1.14) is equivalent to the problem of find- 
ing the position of a body from the known vector of angular velocity o 
in the moving coordinate axes. This problem is considered in [l, pp. lOO- 
1361 and can be reduced to the integration of a single nonlinear complex 
Darboux equation (see, for instance, El, p. 1301), 

If the plane of motion is invariable, i.e. g = const, then from (1.12) 
for g we obtain Fg = 0. In this case the difficulty of solving the prob- 
lem lies entirely fn the integration of the equations (1.9) for u and 
the equation (1.12) for G. 

The plane of motion moves in a regular precession in the case when 

F, z 0, Fg = ous = a?“, a = const (1.16) 

From the equation (1.12) we have C = const. w = const in the moving 
coordinate axes and consequently, in the fixed coordinate axes as well. 

A. I. Lur* e has indicated to the author that the results of E21 re- 
lated to the motion of a satellite in a circular orbit (u = const) with 
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the forces Fg = const, F, = Fy = 0, can be obtained in a considerably 

simpler way from the equations, analogous to (1.14). 

Finally, let us point out that the obtained equations are particu- 

larly convenient for the study of nearly circular orbits, whereas the 

classical equations (see, for instance, [3, p.3501) are not suitable for 

small values of the eccentricity e of the osculating ellipse. 

2. The case of plane motion. If F 3 0 the plane of motion is 

fixed. Let us make a substitution in (1.57 and (1.12) for C, changing 

the independent variable -r to ‘p and the dependent variable G to p by the 

formulas 

dq=Gdz=Cuadt, p=@ (2.4) 

As a result we obtain 

(2.2) 

For Fg s 0 the variable cp has a definite geometrical meaning; it is 

an angle with the vertex at the origin 0, which is described by the 

position vector r on the fixed plane of motion. 

Let us assume that in (2.2) the forces Fy, Fs do not depend on 9, in 

which case the order of the system can be reduced. We introduce u as the 

independent variable and q = du/dp as the dependent variable. ‘Ihen we 

have 

dq 
Qdu =-u+$(k-$F,-+,FF,q), q&&F8 ((I=$) 

(2.3) 
‘l’lle system of equations (2.3) can be integrated if the external 

forces have the form 

F y = kus + aus, F, = bu4, F, = 0 (a, b = const) (2.4) 

since, dividing the first equation (2.3) by the second, we obtain an 

equation which does not contain u and is linear with respect to q. 

3. The integration in a particular case of external 
forces. Let us consider a case of additional forces, more general than 

(2.4) 

‘Ihe expression (3.1) for the force F indicates that, in fact, the 
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Newtonian force is excluded from consideration. 'l&e particle M is acted 

upon by a force inversely proportional to the third power of the dis- 

tance r in the.direction of the vector r, and a force inversely pro- 

portional to the fourth power of the distance r in the direction of the 

vector S, which lies in the plane of motion perpendicularly to r. 

If a = const, b = const and, at the initial instant to, a is chosen 

so as to have F = 0, i.e. n = - kr,,, then the maximal additional force 

F,, in the direc\tion of r must be attained for 

Here kr, -2 is a Newtonian force of attraction for r = ro. 

The equations (1.5) and (1.19) with (3.1) take the form 

gs + Gau = - a (G) u, $- = b(G) u (3.3) 

Eliminating u from the first equation by means of the second, we 
arrive at an integrable equation of the third order 

i- 
CP dG 

i- 
a(G) dG 

6(G)dz b(G)== 
o 

(3.4) 

We integrate the equation (3.4) once and multiply by Zb-'(~)~~/~7. 

Thus we arrive at a new equation of the second order 

2 dv” d 1 dG 

b(C) dr dr 
-- 
b(C) dr 1 + W1(@ dG 

b(G)dr= 
o 

Integrating the equation (3.5) with respect to T, we once again 

arrive at an equation of the first order 

From the equation (3.3) we find 

--_ 
u = I’% (‘3, r = [lpf# (C)f" 

From (3.7) and (1.8) we find the expression for t 

(3.5) 

(3.6) 

(3.7) 

(3-8) 

(3.9) 

From f3.7), (2.1) we can find the expression for the angle 9 
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s GdC 

‘= bW1/%(G) 
(3.10) 

We obtain the solution of the problem, where r, t and 9 are given in 

terms of functions of the parameter G. Tlie arbitrary constants can be 

found from the conditions (1.2). Let us state the final answer for the 

solution of the problem (1.1) with initial conditions (1.2) in the case 

of forces of the form (2.6). 

l%e solution has been carried out by the method given in this article. 

The function v2(C) takes the form 

q#)=C,-_&G”- +“++CIG (3.11) 

C1=lr(ll-1(roio)-~lr~x;~13--~row6~ (3.12) 

Ct!=1r~I-e+~)r0x;O14+~lr0x~OIa+~C11r0Y;Ol 

For r, t and 0 we find from (3.8) to (3.10) 

G 

t=to+ s dG 

Go b (4 vm ’ 

GdG 

b (-3 v/1pm ’ 
G,, = I r x r,, I 

(3.13) 

(3.14) 

For r we obtain the expression 

r = r (70 co8 cp + so sin cp) = f 
( 

& (roP 
E, co.9 cp + - 

- r0 (ronA 

I r0 I . I r0 x i0 I 

sin cp (3.15) 
1 

Since the expressions (3.1) for the forces F , F contain arbitrary 

functions of G, the method of integration givenYIn this article can be 

applied for an approximate numerical or graphical solution of the equa- 

tions (1.10) and (1.12) when forces are given in some other manner. To 

this end we choose arbitrary a(C) and b(C) in (3.1). We find the ex- 

pressions (3.8) to (3.10) for r, 9 and t, and then we improve the func- 

tions a(C) and b(G). The proposed approach is more convenient than the 

direct integration of the equations (1.10) and (1.12), since it always 

requires the integration of known functions of G, rather than differ- 
ential equations. 
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4. The case of integrahility of the equations of motion 
when the additional force F is directed along the velocity 
dr/dt of the moving particle M. Let us designate by a the angle 

formed by the position vector r and the velocity vector dr/dt 

(4.1) 

If the force F is directed along the velocity, then 

Fll5 * F, = F cos a, F, = Fsina, F=IF] (4.2) 

From (4.1) and (4.2) we find 

(4.3) 

For tile force F directed along the velocity, the equations (2.2) and 

(2.3) take a relatively simple form 

(4.4) 

It is interesting to note that the change of the radius r depends on 

the force F, but only indirectly, by way of p. 

a) Let the projection of the force FS be given in the form 

F, = a (cp) b (P) u3 (4.5) 

In this case the equations (4.4) can be integrated. 

We will write down the solution for the particular case (4.5), when 

the force F is acting alon g the velocity and has the form 

F=IFI=$$$ F, = y = A (cp) ~3 (4.6) 

From (4.4), (1.2) we find the solution 

p (cp) = I ro x ;o I2 + 2 5 A (cp) d9 (4.7) 
cpo 

The parameter is the angle 9 which the position vector r describes 
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in the plane of motion. 

b) Let us change to a new independent variable u in (4.4) by setting 

du 1 dr i 
9 =Jp q=--;rT=-Tma 

‘Ihe system of equations (2.4) and (2.5) takes the form 

(4.10) 

dq k ---u 9du=p 9 
dp 2F, 

!ldu=yr (4.11) 

The system of equations (4.11) will be integrable if in (4.11) we set 

F, = qa(u)b(p) = -uua(u)b(p) it a (4.12) 

We will state the solution for the case when the force F has the form 

F = A (r) s (4.13) 

From (4.11) we find the expressions for r, 0 and t in terms of the 

parameter u 

P 04 = I ro x ;o I” -2[;A(f)d., uo = 1 ro I-’ 
u. 

(ro;ol’ 
% 

9 (u) = [ 
Iro12*lro x rb I* 

u du 
1 1 Y 

9=$Jo+{y$* 
u 4 

r=- 
u ’ t=to+ 

ur 

c) From (4.1) we have 

EO( a= -rq, sin a = (1 + rrqr)+ - - u (u’ + q’)-” 

‘be equations (4.11) can be rewritten in the form 

d (q’ + u’) 2k 
du =p’ 

dp 2F 
9x= - 

us Vu’+ q’ 

For the independent variable we introduce the quantity u 

p = q’ + us 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

lhe quantity (u) -l” has a definite geometrical meaning; it is the 

distance from the origin 0 to the straight line which passes through the 
particle M and is parallel to the velocity vector &/cft. 

The equations (4.18) can be integrated if the expression for the 
force F has the form 
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FE /Ff =~-~a~(p)b(p) cot 51 (4.20) 

Let us state the final solution for the case of force F acting along 
the velocity vector dr/dt and having the form 

P=g(j&) Wt.ar-s (4.21) 

From the equations (4.18) we find the expressions for F, 9 and t in 
terms of the parameter ct 

r (p) = ._-I!- 
u (PI 

(4.23) 

PI 

ip 
t=to+x 

s 

VP(P)+ 

ii* 3(P) ‘1/ir-.*(t) 
(4.24) 

The equations (4.4) and (4.11) have a simple form and it appears that 
other ways of prescribing the force F can be found, for which these 
equations are integrable. In all the cases (a), (b) and (c) the ex- 
pression for the force contains an arbitrary function of the parameter. 
All these cases can be utilized for approximate solutions when the force 
F, directed alone the velocity, is specified in some other manner. For 

instance, the cases (a) and (b) can be used in the study of the effect 
of friction, caused by the atmosphere, on satellites. Let us note that 

dr I I dt= V--tBB=& (4.25) 

ln conclusion the author wishes to thank A.I. Lur’e for discussion 
of this paper. 
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